Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1060168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687571

RESUMO

Introduction: Shallow hydrothermal systems share many characteristics with their deep-sea counterparts, but their accessibility facilitates their study. One of the most studied shallow hydrothermal vent fields lies at Paleochori Bay off the coast of Milos in the Aegean Sea (Greece). It has been studied through extensive mapping and its physical and chemical processes have been characterized over the past decades. However, a thorough description of the microbial communities inhabiting the bay is still missing. Methods: We present the first in-depth characterization of the prokaryotic communities of Paleochori Bay by sampling eight different seafloor types that are distributed along the entire gradient of hydrothermal influence. We used deep sequencing of the 16S rRNA marker gene and complemented the analysis with qPCR quantification of the 16S rRNA gene and several functional genes to gain insights into the metabolic potential of the communities. Results: We found that the microbiome of the bay is strongly influenced by the hydrothermal venting, with a succession of various groups dominating the sediments from the coldest to the warmest zones. Prokaryotic diversity and abundance decrease with increasing temperature, and thermophilic archaea overtake the community. Discussion: Relevant geochemical cycles of the Bay are discussed. This study expands our limited understanding of subsurface microbial communities in acidic shallow-sea hydrothermal systems and the contribution of their microbial activity to biogeochemical cycling.

2.
Int J Syst Evol Microbiol ; 70(8): 4739-4747, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32730198

RESUMO

A novel, obligately anaerobic bacterium (strain SURF-ANA1T) was isolated from deep continental subsurface fluids at a depth of 1500 m below surface in the former Homestake Gold Mine (now Sanford Underground Research Facility, in Lead, South Dakota, USA). Cells of strain SURF-ANA1T were Gram-negative, helical, non-spore-forming and were 0.25-0.55×5.0-75.0 µm with a wavelength of 0.5-0.62 µm. Strain SURF-ANA1T grew at 15-50 °C (optimally at 40 °C), at pH 4.8-9.0 (pH 7.2) and in 1.0-40.0 g l-1 NaCl (10 g l-1 NaCl). The strain grew chemoheterotrophically with hydrogen or mono-, di- and polysaccharides as electron donors. The major cellular fatty acids in order of decreasing abundance (comprising >5% of total) were 10-methyl C16:0, iso-C15:0, C18:2 and C18:0 dimethyl acetal (DMA) and C20:0 methylene-nonadecanoic acid. Phylogenetic analysis based on the 16S rRNA gene sequence of strain SURF-ANA1T indicated a closest relationship with the recently characterized Rectinema cohabitans (99%). Despite high sequence identity, because of its distinct physiology, morphology and fatty acid profile, strain SURF-ANA1T is considered to represent a novel species within the genus Rectinema, for which the name Rectinema subterraneum sp. nov. is proposed. To our knowledge, this is the first report of an isolate within the phylum Spirochaetes from the deep (>100 m) terrestrial subsurface. The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene and genomic sequences of strain SURF-ANA1T are KU359248 and GCF 009768935.1, respectively. The type strain of Rectinema subterraneum is SURF-ANA1T (=ATCC TSD-67=JCM 32656).


Assuntos
Água Subterrânea/microbiologia , Filogenia , Spirochaetaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , South Dakota , Spirochaetaceae/isolamento & purificação
3.
PLoS One ; 15(6): e0234175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32502166

RESUMO

Shallow-sea hydrothermal systems, like their deep-sea and terrestrial counterparts, can serve as relatively accessible portals into the microbial ecology of subsurface environments. In this study, we determined the chemical composition of 47 sediment porewater samples along a transect from a diffuse shallow-sea hydrothermal vent to a non-thermal background area in Paleochori Bay, Milos Island, Greece. These geochemical data were combined with thermodynamic calculations to quantify potential sources of energy that may support in situ chemolithotrophy. The Gibbs energies (ΔGr) of 730 redox reactions involving 23 inorganic H-, O-, C-, N-, S-, Fe-, Mn-, and As-bearing compounds were calculated. Of these reactions, 379 were exergonic at one or more sampling locations. The greatest energy yields were from anaerobic CO oxidation with NO2- (-136 to -162 kJ/mol e-), followed by reactions in which the electron acceptor/donor pairs were O2/CO, NO3-/CO, and NO2-/H2S. When expressed as energy densities (where the concentration of the limiting reactant is taken into account), a different set of redox reactions are the most exergonic: in sediments affected by hydrothermal input, sulfide oxidation with a range of electron acceptors or nitrite reduction with different electron donors provide 85~245 J per kg of sediment, whereas in sediments less affected or unaffected by hydrothermal input, various S0 oxidation reactions and aerobic respiration reactions with several different electron donors are most energy-yielding (80~95 J per kg of sediment). A model that considers seawater mixing with hydrothermal fluids revealed that there is up to ~50 times more energy available for microorganisms that can use S0 or H2S as electron donors and NO2- or O2 as electron acceptors compared to other reactions. In addition to revealing likely metabolic pathways in the near-surface and subsurface mixing zones, thermodynamic calculations like these can help guide novel microbial cultivation efforts to isolate new species.


Assuntos
Metabolismo Energético , Fontes Hidrotermais , Grécia , Fontes Hidrotermais/microbiologia , Ilhas , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...